TSP with bounded metrics
نویسندگان
چکیده
منابع مشابه
TSP with bounded metrics
The general asymmetric TSP with triangle inequality is known to be approximable only within logarithmic factors. In this paper we study the asymmetric and symmetric TSP problems with bounded metrics, i.e., metrics where the distances are integers between one and some constant upper bound. In this case, the problem is known to be approximable within a constant factor. We prove that it is NP-hard...
متن کاملApproximation Hardness of TSP with Bounded Metrics
The general asymmetric TSP with triangle inequality is known to be approximable only within an O(log n) factor, and is also known to be approximable within a constant factor as soon as the metric is bounded. In this paper we study the asymmetric and symmetric TSP problems with bounded metrics, i.e., metrics where the distances are integers between one and some upper bound B. We first prove appr...
متن کاملApproximation Hardness of TSP with Bounded Metrics ( Revised
The general asymmetric TSP with triangle inequality is known to be approximable only to within an O(log n) factor, and is also known to be approximable within a constant factor as soon as the metric is bounded. In this paper we study the asymmetric and symmetric TSP problems with bounded metrics and prove approximation lower bounds of 131=130 and 174=173, respectively, for these problems, impro...
متن کاملOn Approximation Lower Bounds for TSP with Bounded Metrics
We develop a new method for proving explicit approximation lower bounds for TSP problems with bounded metrics improving on the best up to now known bounds. They almost match the best known bounds for unbounded metric TSP problems. In particular, we prove the best known lower bound for TSP with bounded metrics for the metric bound equal to 4.
متن کاملMaximum Scatter TSP in Doubling Metrics
We study the problem of finding a tour of n points in which every edge is long. More precisely, we wish to find a tour that visits every point exactly once, maximizing the length of the shortest edge in the tour. The problem is known as Maximum Scatter TSP, and was introduced by Arkin et al. (SODA 1997), motivated by applications in manufacturing and medical imaging. Arkin et al. gave a 0.5 -ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computer and System Sciences
سال: 2006
ISSN: 0022-0000
DOI: 10.1016/j.jcss.2005.12.001